Multi-Valued Autoencoders and Classification of Large-Scale Multi-Class Problem
نویسندگان
چکیده
منابع مشابه
Multi-Valued Autoencoders and Classification of Large-Scale Multi-Class Problem
Two-layered neural networks are well known as autoencoders (AEs) in order to reduce the dimensionality of data. AEs are successfully employed as pre-trained layers of neural networks for classification tasks. Most of the existing studies conceived real-valued AEs in real-valued neural networks. This study investigated complexand quaternion-valued AEs for complexand quaternion-valued neural netw...
متن کاملComparison of Fast Learning Large-Scale Multi-Class Classification
Recent progress in the development of techniques to optimize large-scale classification problems has extended the use of multi-class classification. Specifically the use of multi-class classification algorithms when the dataset is to large to fit into limited memory available of most computers. The most prominent algorithms used today solve the multi-class classification problem through an opti...
متن کاملCandidates v.s. Noises Estimation for Large Multi-Class Classification Problem
This paper proposes a method for multi-class classification problems, where the number of classes K is large. The method, referred to as Candidates v.s. Noises Estimation (CANE), selects a small subset of candidate classes and samples the remaining classes. We show that CANE is always consistent and computationally efficient. Moreover, the resulting estimator has low statistical variance approa...
متن کاملEfficient Large-Scale Multi-Modal Classification
While the incipient internet was largely text-based, the modern digital world is becoming increasingly multi-modal. Here, we examine multi-modal classification where one modality is discrete, e.g. text, and the other is continuous, e.g. visual representations transferred from a convolutional neural network. In particular, we focus on scenarios where we have to be able to classify large quantiti...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2017
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2017.081103